[image:]

Data Engineering Guide

Databricks Spark Environment Setup Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

	Department
	Mastech Digital - Data & Analytics

Table of Contents
[Executive Summary](#1-executive-summary)
[Databricks Workspace Architecture](#2-databricks-workspace-architecture)
[Cluster Types and Selection](#3-cluster-types-and-selection)
[Cluster Configuration Best Practices](#4-cluster-configuration-best-practices)
[Spark Configuration Parameters](#5-spark-configuration-parameters)
[Developer Environment Setup](#6-developer-environment-setup)
[Instance Pool Configuration](#7-instance-pool-configuration)
[Cluster Policies](#8-cluster-policies)
[Environment Management](#9-environment-management)
[Security Configuration](#10-security-configuration)
[Monitoring and Observability](#11-monitoring-and-observability)
[Troubleshooting Guide](#12-troubleshooting-guide)
[Cost Management](#13-cost-management)
[Reference Configurations](#14-reference-configurations)
1. Executive Summary
1.1 Purpose and Scope
This guide provides comprehensive instructions for configuring Databricks Spark environments optimized for enterprise data engineering workloads. It covers cluster sizing, Spark configuration tuning, developer environment setup, and operational best practices to ensure consistent, performant, and cost-effective data processing.
1.2 Why Environment Configuration Matters
Proper Spark environment configuration directly impacts:
Performance: Correctly sized clusters process data faster and more efficiently
Cost: Right-sized resources prevent over-provisioning and waste
Reliability: Proper configuration prevents out-of-memory errors and job failures
Developer Productivity: Standardized environments reduce setup time and debugging efforts
Security: Consistent security configurations ensure compliance across all workloads
1.3 Target Audience
This guide serves:
Data Engineers: Setting up development and production environments
Platform Engineers: Managing Databricks infrastructure and cluster policies
Team Leads: Establishing standards and governance for compute resources
DevOps Engineers: Automating environment provisioning and management
1.4 Key Concepts
Before diving into configuration details, understand these fundamental concepts:
	Concept
	Description

	Driver
	The node that coordinates Spark job execution and maintains SparkContext

	Worker/Executor
	Nodes that execute tasks and store data partitions

	DBU
	Databricks Unit - the unit of compute billing

	Photon
	Databricks' native vectorized query engine for faster SQL

	Unity Catalog
	Centralized governance solution for data and AI assets

2. Databricks Workspace Architecture
2.1 Control Plane vs Data Plane
Understanding the Databricks architecture is essential for proper environment configuration:
┌───┐
│ DATABRICKS ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ CONTROL PLANE (Databricks-managed) │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Workspace │ │ Cluster │ │ Job │ │ │
│ │ │ Service │ │ Manager │ │ Scheduler │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Unity │ │ Secrets │ │ REST │ │ │
│ │ │ Catalog │ │ Service │ │ API │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ DATA PLANE (Customer Cloud Account) │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Compute │ │ Cloud │ │ Network │ │ │
│ │ │ Clusters │ │ Storage │ │ (VPC/VNet) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │
└───┘
2.2 Workspace Components
	Component
	Purpose
	Configuration Scope

	Workspace
	Logical container for notebooks, clusters, jobs
	Organization-level

	Catalog
	Data governance and discovery (Unity Catalog)
	Cross-workspace

	Cluster
	Compute resources for processing
	Workspace-level

	Instance Pool
	Pre-warmed instances for faster cluster start
	Workspace-level

	Cluster Policy
	Governance rules for cluster configuration
	Workspace/Account-level

2.3 Environment Tiers
Establish distinct environment tiers with appropriate isolation and governance:
	Environment
	Purpose
	Cluster Policy
	Data Access

	Development
	Individual developer work
	Relaxed, cost-controlled
	Dev catalog only

	Test/QA
	Integration testing
	Moderate restrictions
	Test catalog

	Staging
	Pre-production validation
	Production-like
	Staging catalog

	Production
	Business workloads
	Strict governance
	Production catalog

3. Cluster Types and Selection
3.1 All-Purpose Clusters
All-purpose clusters are designed for interactive workloads—development, ad-hoc analysis, and collaborative work. They persist until manually terminated or auto-terminated after idle timeout.
Characteristics:
Multiple users can attach notebooks simultaneously
Cluster state persists across notebook detach/attach
Suitable for development and exploration
Higher cost due to always-on nature
When to Use:
Interactive development and debugging
Data exploration and analysis
Collaborative notebook sessions
Ad-hoc queries and investigations
When NOT to Use:
Scheduled production jobs (use job clusters instead)
Long-running batch processes
Cost-sensitive workloads
3.2 Job Clusters
Job clusters are created specifically for job execution and automatically terminate upon job completion. They provide better cost efficiency and isolation for production workloads.
Characteristics:
Created when job starts, terminated when job completes
Single-purpose: one job per cluster
Lower cost due to usage-based billing
Better isolation between workloads
When to Use:
Scheduled ETL pipelines
Production data processing jobs
Batch workloads with predictable resource needs
CI/CD pipeline executions
3.3 SQL Warehouses
SQL Warehouses are optimized for BI and SQL workloads, providing a serverless or classic compute option specifically designed for SQL analytics.
Characteristics:
Optimized for concurrent SQL queries
Automatic scaling based on query load
Serverless option eliminates infrastructure management
Photon-accelerated by default
When to Use:
BI tool connectivity (Tableau, Power BI, Looker)
SQL-based analytics and reporting
Dashboard queries with high concurrency
Ad-hoc SQL exploration
3.4 Cluster Selection Decision Matrix
Use this matrix to select the appropriate cluster type:
	Workload
	Cluster Type
	Reasoning

	Interactive notebook development
	All-Purpose
	Needs persistence and collaboration

	Scheduled ETL job
	Job Cluster
	Cost-efficient, auto-terminates

	BI dashboard queries
	SQL Warehouse
	Optimized for SQL, high concurrency

	ML model training
	Job Cluster or All-Purpose
	Depends on iteration frequency

	Streaming pipeline
	All-Purpose (dedicated)
	Needs continuous operation

	Ad-hoc data exploration
	All-Purpose
	Interactive, unpredictable duration

4. Cluster Configuration Best Practices
4.1 Cluster Sizing Fundamentals
Proper cluster sizing balances performance, cost, and reliability. Understanding the relationship between data size, processing complexity, and required resources is essential.
Key Sizing Factors:
Data Volume: Total data to be processed
Data Complexity: Joins, aggregations, transformations
Concurrency: Number of simultaneous users/queries
Latency Requirements: Acceptable processing time
Budget Constraints: Available compute budget
4.2 Node Type Selection
Databricks offers multiple node types optimized for different workload characteristics:
	Node Category
	Characteristics
	Best For

	Memory Optimized
	High memory-to-CPU ratio
	Large joins, caching, ML training

	Compute Optimized
	High CPU-to-memory ratio
	CPU-intensive transformations

	Storage Optimized
	High local SSD storage
	Shuffle-heavy workloads, spill handling

	General Purpose
	Balanced resources
	Mixed workloads, development

	GPU
	Graphics processing units
	Deep learning, ML inference

4.3 Recommended Node Types by Cloud Provider
AWS:
	Use Case
	Instance Type
	vCPUs
	Memory
	Notes

	Development
	i3.xlarge
	4
	30.5 GB
	Good balance, local SSD

	General ETL
	i3.2xlarge
	8
	61 GB
	Recommended default

	Memory-intensive
	r5.2xlarge
	8
	64 GB
	Large joins, caching

	Compute-intensive
	c5.4xlarge
	16
	32 GB
	CPU-bound transforms

	Large-scale ETL
	i3.4xlarge
	16
	122 GB
	Production workloads

Azure:
	Use Case
	Instance Type
	vCPUs
	Memory
	Notes

	Development
	Standard_DS3_v2
	4
	14 GB
	Cost-effective dev

	General ETL
	Standard_DS4_v2
	8
	28 GB
	Balanced workloads

	Memory-intensive
	Standard_E8s_v3
	8
	64 GB
	Memory-optimized

	Compute-intensive
	Standard_F16s_v2
	16
	32 GB
	CPU-optimized

	Large-scale ETL
	Standard_L8s_v2
	8
	64 GB
	Storage-optimized

GCP:
	Use Case
	Instance Type
	vCPUs
	Memory
	Notes

	Development
	n1-standard-4
	4
	15 GB
	Standard development

	General ETL
	n1-standard-8
	8
	30 GB
	General processing

	Memory-intensive
	n1-highmem-8
	8
	52 GB
	Memory workloads

	Compute-intensive
	n1-highcpu-16
	16
	14.4 GB
	CPU workloads

4.4 Driver vs Worker Sizing
The driver node has different resource requirements than worker nodes:
Driver Sizing Guidelines:
Driver coordinates all tasks and collects results
Needs sufficient memory for broadcast variables and collected data
Should handle metadata and plan complexity
Generally same or larger than worker nodes
	Workload
	Driver Recommendation

	Simple ETL
	Same as workers

	Complex joins/aggregations
	1.5-2x worker memory

	Large broadcast joins
	2x+ worker memory

	Collect() operations
	Scale with collected data size

4.5 Autoscaling Configuration
Autoscaling enables clusters to dynamically adjust worker count based on workload demand:
When to Enable Autoscaling:
Variable workload intensity
Cost optimization priority
Unpredictable query patterns
Shared development clusters
When to Disable Autoscaling:
Consistent, predictable workloads
Latency-sensitive jobs (scaling adds delay)
Streaming pipelines (prefer fixed resources)
Short-running jobs (scaling overhead not worthwhile)
Autoscaling Best Practices:
Minimum Workers: Set based on baseline workload
Maximum Workers: Set based on budget and peak needs
Scale Down Threshold: Time before removing idle workers (default: 5 min)

Recommended Ranges:
- Development: Min 1, Max 4
- Test/QA: Min 2, Max 8
- Production ETL: Fixed size or Min 4, Max 16
- Production SQL: Serverless (auto-managed)
4.6 Spot/Preemptible Instances
Spot instances provide significant cost savings (50-70%) but can be reclaimed by the cloud provider:
Best Practices for Spot Instances:
Use for workers only, never for driver
Enable for fault-tolerant workloads
Combine with on-demand fallback
Avoid for latency-sensitive jobs
Recommended Configuration:
- Driver: On-demand (always)
- Workers:
 - Development: 100% spot
 - Test: 80% spot, 20% on-demand fallback
 - Production: 50-70% spot with fallback
5. Spark Configuration Parameters
5.1 Understanding Spark Configuration Hierarchy
Spark configurations can be set at multiple levels, with lower levels overriding higher levels:
┌───┐
│ CONFIGURATION HIERARCHY │
├───┤
│ │
│ 1. Cluster-level (spark_conf in cluster definition) [Lowest Priority]│
│ ▼ │
│ 2. Notebook-level (spark.conf.set()) │
│ ▼ │
│ 3. Job-level (job configuration) │
│ ▼ │
│ 4. Session-level (SparkSession.builder.config()) [Highest Priority]│
│ │
└───┘
5.2 Memory Configuration
Memory management is critical for Spark performance. Understanding the memory model prevents out-of-memory errors and optimizes resource utilization.
Spark Memory Model:
┌───┐
│ EXECUTOR MEMORY LAYOUT │
├───┤
│ │
│ Total Executor Memory (spark.executor.memory) │
│ ├── Reserved Memory (300MB fixed) │
│ └── Usable Memory │
│ ├── User Memory (40% default) │
│ │ └── User data structures, RDD transformations │
│ └── Spark Memory (60% default) │
│ ├── Storage Memory (50% of Spark Memory) │
│ │ └── Cached data, broadcast variables │
│ └── Execution Memory (50% of Spark Memory) │
│ └── Shuffles, joins, sorts, aggregations │
│ │
│ Off-Heap Memory (spark.memory.offHeap.size) │
│ └── Additional memory outside JVM heap │
│ │
└───┘
Key Memory Parameters:
	Parameter
	Default
	Description
	Tuning Guidance

	`spark.executor.memory`
	Varies
	Executor JVM heap size
	70-80% of node memory

	`spark.driver.memory`
	Varies
	Driver JVM heap size
	Based on collect/broadcast size

	`spark.memory.fraction`
	0.6
	Fraction for execution and storage
	Increase for memory-heavy ops

	`spark.memory.storageFraction`
	0.5
	Fraction of Spark memory for storage
	Increase for heavy caching

	`spark.memory.offHeap.enabled`
	false
	Enable off-heap memory
	Enable for large datasets

	`spark.memory.offHeap.size`
	0
	Off-heap memory size
	Set when enabled

Example Configuration:
Memory configuration for a memory-intensive ETL job
spark_conf = {
 "spark.executor.memory": "24g",
 "spark.driver.memory": "16g",
 "spark.memory.fraction": "0.7",
 "spark.memory.storageFraction": "0.3",
 "spark.memory.offHeap.enabled": "true",
 "spark.memory.offHeap.size": "8g"
}
5.3 Parallelism Configuration
Parallelism settings control how Spark distributes work across the cluster:
	Parameter
	Default
	Description
	Tuning Guidance

	`spark.sql.shuffle.partitions`
	200
	Partitions for shuffle operations
	2-3x total cores

	`spark.default.parallelism`
	Total cores
	Default RDD partitions
	2-3x total cores

	`spark.sql.files.maxPartitionBytes`
	128MB
	Max bytes per partition
	Adjust for file sizes

	`spark.sql.adaptive.enabled`
	true
	Enable Adaptive Query Execution
	Keep enabled

	`spark.sql.adaptive.coalescePartitions.enabled`
	true
	Auto-coalesce small partitions
	Keep enabled

Calculating Optimal Parallelism:
Formula for shuffle partitions
total_cores = num_workers * cores_per_worker
optimal_shuffle_partitions = total_cores * 2 # or 3 for complex operations

Example: 8 workers with 4 cores each
total_cores = 32
shuffle_partitions = 64-96 (start with 64, increase if needed)
Example Configuration:
Parallelism configuration for a 32-core cluster
spark_conf = {
 "spark.sql.shuffle.partitions": "64",
 "spark.default.parallelism": "64",
 "spark.sql.files.maxPartitionBytes": "134217728", # 128MB
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.minPartitionSize": "67108864" # 64MB
}
5.4 Shuffle Configuration
Shuffle operations are often the bottleneck in Spark jobs. Proper configuration minimizes shuffle overhead:
	Parameter
	Default
	Description
	Tuning Guidance

	`spark.sql.shuffle.partitions`
	200
	Number of shuffle partitions
	See parallelism section

	`spark.shuffle.file.buffer`
	32k
	Buffer size for shuffle writes
	Increase to 64k-128k

	`spark.reducer.maxSizeInFlight`
	48m
	Max size of map outputs fetched
	Increase for large shuffles

	`spark.shuffle.compress`
	true
	Compress shuffle output
	Keep enabled

	`spark.shuffle.spill.compress`
	true
	Compress spilled data
	Keep enabled

5.5 Serialization Configuration
Efficient serialization improves performance for data transfer and caching:
	Parameter
	Recommended
	Description

	`spark.serializer`
	org.apache.spark.serializer.KryoSerializer
	Use Kryo for better performance

	`spark.kryoserializer.buffer.max`
	1024m
	Max Kryo buffer size

	`spark.sql.parquet.compression.codec`
	snappy
	Parquet compression codec

5.6 Delta Lake Configuration
Optimize Delta Lake operations with these parameters:
	Parameter
	Recommended
	Description

	`spark.databricks.delta.optimizeWrite.enabled`
	true
	Auto-coalesce small files

	`spark.databricks.delta.autoCompact.enabled`
	true
	Auto-compact after writes

	`spark.databricks.delta.properties.defaults.enableChangeDataFeed`
	true
	Default CDF enabled

	`spark.databricks.delta.schema.autoMerge.enabled`
	false
	Control schema evolution

5.7 Complete Configuration Template
Here's a comprehensive configuration template for production ETL workloads:
Production ETL Cluster Configuration
spark_conf = {
 # Memory Configuration
 "spark.executor.memory": "24g",
 "spark.driver.memory": "16g",
 "spark.memory.fraction": "0.7",
 "spark.memory.storageFraction": "0.3",

 # Parallelism Configuration
 "spark.sql.shuffle.partitions": "auto", # AQE will optimize
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.skewJoin.enabled": "true",

 # Serialization
 "spark.serializer": "org.apache.spark.serializer.KryoSerializer",
 "spark.kryoserializer.buffer.max": "1024m",

 # Shuffle Optimization
 "spark.shuffle.file.buffer": "64k",
 "spark.reducer.maxSizeInFlight": "96m",

 # Delta Lake
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.databricks.delta.autoCompact.enabled": "true",

 # Photon (Databricks-specific)
 "spark.databricks.photon.enabled": "true",

 # I/O Optimization
 "spark.sql.files.maxPartitionBytes": "134217728",
 "spark.sql.parquet.compression.codec": "snappy"
}
6. Developer Environment Setup
6.1 Local Development Options
Developers can work with Databricks code locally using several approaches:
	Approach
	Description
	Best For

	Databricks Connect
	Remote execution on Databricks cluster
	Full Spark functionality

	VS Code Extension
	IDE integration with Databricks
	Python/SQL development

	Local Spark
	Run Spark locally for small tests
	Unit testing, rapid iteration

	dbx
	CLI for deployment and management
	CI/CD integration

6.2 Databricks Connect Setup
Databricks Connect allows running Spark code from local IDEs while executing on a Databricks cluster:
Prerequisites:
Python 3.8+
Databricks workspace access
Personal access token
Installation:
Create virtual environment
python -m venv databricks-env
source databricks-env/bin/activate # Linux/Mac
or
databricks-env\Scripts\activate # Windows

Install Databricks Connect
pip install databricks-connect==13.3.* # Match your cluster DBR version

Configure connection
databricks-connect configure
Enter:
- Databricks Host: https://your-workspace.cloud.databricks.com
- Token: your-personal-access-token
- Cluster ID: your-cluster-id
- Org ID: (press enter for default)
- Port: 15001 (default)

Verify connection
databricks-connect test
Usage in Python:
from databricks.connect import DatabricksSession

Create SparkSession connected to Databricks
spark = DatabricksSession.builder.profile("DEFAULT").getOrCreate()

Now use Spark as normal - execution happens on Databricks cluster
df = spark.read.table("catalog.schema.table")
df.show()
6.3 VS Code Extension Setup
The Databricks extension for VS Code provides integrated development experience:
Installation:
Install VS Code
Install "Databricks" extension from marketplace
Configure workspace connection
Configuration:
// .vscode/settings.json
{
 "databricks.host": "https://your-workspace.cloud.databricks.com",
 "databricks.clusterId": "your-cluster-id",
 "databricks.python.envFile": "${workspaceFolder}/.env"
}
Features:
Notebook synchronization
Cluster management
Job deployment
Interactive debugging
6.4 Development Cluster Configuration
Configure development clusters for optimal developer experience:
{
 "cluster_name": "dev-${user}-cluster",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.xlarge",
 "driver_node_type_id": "i3.xlarge",
 "num_workers": 2,
 "autoscale": {
 "min_workers": 1,
 "max_workers": 4
 },
 "autotermination_minutes": 60,
 "spark_conf": {
 "spark.databricks.cluster.profile": "singleNode",
 "spark.master": "local[*]"
 },
 "custom_tags": {
 "Environment": "Development",
 "Owner": "${user}"
 },
 "spark_env_vars": {
 "PYSPARK_PYTHON": "/databricks/python3/bin/python3"
 },
 "enable_elastic_disk": true,
 "enable_local_disk_encryption": true
}
6.5 Repository Integration
Set up Git integration for version-controlled development:
Databricks Repos Configuration:
Navigate to Repos in Databricks workspace
Click "Add Repo"
Enter repository URL and credentials
Clone repository
Git Configuration:
In notebook or cluster init script
%sh
git config --global user.email "developer@company.com"
git config --global user.name "Developer Name"
Branching Strategy for Databricks:
main (production)
├── develop (integration)
│ ├── feature/feature-name
│ ├── bugfix/bug-description
│ └── hotfix/critical-fix
6.6 Python Environment Management
Manage Python dependencies consistently across environments:
Using requirements.txt:
requirements.txt
pandas>=2.0.0
numpy>=1.24.0
pyarrow>=12.0.0
delta-spark>=2.4.0
great-expectations>=0.17.0
Cluster Libraries Configuration:
{
 "libraries": [
 {
 "pypi": {
 "package": "pandas>=2.0.0"
 }
 },
 {
 "pypi": {
 "package": "great-expectations>=0.17.0"
 }
 }
]
}
Using Init Scripts:
#!/bin/bash
init_script.sh - Cluster initialization script

Install system dependencies
apt-get update
apt-get install -y libpq-dev

Install Python packages
pip install --upgrade pip
pip install -r /dbfs/requirements/requirements.txt

Set environment variables
export ENVIRONMENT=development
export LOG_LEVEL=DEBUG
7. Instance Pool Configuration
7.1 Understanding Instance Pools
Instance pools maintain a set of ready-to-use cloud instances, reducing cluster startup time from minutes to seconds. This is particularly valuable for job clusters that frequently spin up and down.
Benefits:
Reduced cluster start time (seconds vs minutes)
Lower costs through reuse of instances
Predictable capacity availability
Simplified instance management
7.2 When to Use Instance Pools
	Scenario
	Use Pool?
	Reasoning

	Frequent job executions
	Yes
	Significant time savings

	Development clusters
	Yes
	Faster iteration

	Long-running clusters
	No
	No benefit, instances always running

	Unpredictable workloads
	Maybe
	Balance availability vs cost

	Production jobs with SLAs
	Yes
	Faster start guarantees SLA

7.3 Instance Pool Configuration
{
 "instance_pool_name": "production-etl-pool",
 "node_type_id": "i3.2xlarge",
 "min_idle_instances": 2,
 "max_capacity": 20,
 "idle_instance_autotermination_minutes": 30,
 "preloaded_spark_versions": [
 "13.3.x-scala2.12"
],
 "preloaded_docker_images": [],
 "aws_attributes": {
 "availability": "ON_DEMAND",
 "zone_id": "auto",
 "spot_bid_price_percent": 100
 },
 "custom_tags": {
 "Environment": "Production",
 "CostCenter": "DataEngineering"
 },
 "enable_elastic_disk": true
}
7.4 Instance Pool Sizing Guidelines
	Pool Purpose
	Min Idle
	Max Capacity
	Idle Timeout

	Development
	0-1
	10
	60 min

	Test/QA
	1-2
	15
	45 min

	Production ETL
	2-4
	50
	30 min

	Production SQL
	2-4
	100
	30 min

7.5 Cost Optimization with Pools
Mixed Instance Strategy:
{
 "instance_pool_name": "cost-optimized-pool",
 "node_type_id": "i3.2xlarge",
 "min_idle_instances": 2,
 "max_capacity": 20,
 "aws_attributes": {
 "availability": "SPOT_WITH_FALLBACK",
 "spot_bid_price_percent": 80,
 "first_on_demand": 2
 }
}
This configuration maintains 2 on-demand instances for reliability while using spot instances for scaling.
8. Cluster Policies
8.1 Purpose of Cluster Policies
Cluster policies enforce governance rules on cluster configurations, ensuring consistency, cost control, and security compliance across the organization.
Benefits:
Prevent over-provisioning and cost overruns
Enforce security configurations
Standardize environments across teams
Simplify cluster creation for users
8.2 Policy Structure
Policies define allowed values, default values, and restrictions for cluster attributes:
{
 "policy_name": "development-policy",
 "definition": {
 "spark_version": {
 "type": "allowlist",
 "values": ["13.3.x-scala2.12", "14.0.x-scala2.12"],
 "defaultValue": "13.3.x-scala2.12"
 },
 "node_type_id": {
 "type": "allowlist",
 "values": ["i3.xlarge", "i3.2xlarge"],
 "defaultValue": "i3.xlarge"
 },
 "num_workers": {
 "type": "range",
 "minValue": 1,
 "maxValue": 4,
 "defaultValue": 2
 },
 "autotermination_minutes": {
 "type": "range",
 "minValue": 30,
 "maxValue": 120,
 "defaultValue": 60
 }
 }
}
8.3 Development Cluster Policy
{
 "policy_name": "dev-data-engineering",
 "description": "Policy for development data engineering clusters",
 "definition": {
 "spark_version": {
 "type": "allowlist",
 "values": ["13.3.x-scala2.12", "14.0.x-scala2.12"],
 "defaultValue": "13.3.x-scala2.12"
 },
 "node_type_id": {
 "type": "allowlist",
 "values": ["i3.xlarge", "i3.2xlarge", "m5.xlarge", "m5.2xlarge"],
 "defaultValue": "i3.xlarge"
 },
 "driver_node_type_id": {
 "type": "allowlist",
 "values": ["i3.xlarge", "i3.2xlarge"],
 "defaultValue": "i3.xlarge"
 },
 "autoscale.min_workers": {
 "type": "range",
 "minValue": 1,
 "maxValue": 2,
 "defaultValue": 1
 },
 "autoscale.max_workers": {
 "type": "range",
 "minValue": 1,
 "maxValue": 8,
 "defaultValue": 4
 },
 "autotermination_minutes": {
 "type": "range",
 "minValue": 30,
 "maxValue": 120,
 "defaultValue": 60
 },
 "custom_tags.Environment": {
 "type": "fixed",
 "value": "Development"
 },
 "custom_tags.CostCenter": {
 "type": "fixed",
 "value": "DataEngineering"
 },
 "aws_attributes.availability": {
 "type": "allowlist",
 "values": ["SPOT_WITH_FALLBACK", "SPOT"],
 "defaultValue": "SPOT_WITH_FALLBACK"
 },
 "enable_local_disk_encryption": {
 "type": "fixed",
 "value": true
 }
 },
 "max_clusters_per_user": 2
}
8.4 Production Cluster Policy
{
 "policy_name": "prod-data-engineering",
 "description": "Policy for production data engineering clusters",
 "definition": {
 "spark_version": {
 "type": "allowlist",
 "values": ["13.3.x-scala2.12"],
 "defaultValue": "13.3.x-scala2.12"
 },
 "node_type_id": {
 "type": "allowlist",
 "values": ["i3.2xlarge", "i3.4xlarge"],
 "defaultValue": "i3.2xlarge"
 },
 "driver_node_type_id": {
 "type": "allowlist",
 "values": ["i3.2xlarge", "i3.4xlarge"],
 "defaultValue": "i3.2xlarge"
 },
 "num_workers": {
 "type": "range",
 "minValue": 2,
 "maxValue": 32
 },
 "autotermination_minutes": {
 "type": "fixed",
 "value": 30
 },
 "custom_tags.Environment": {
 "type": "fixed",
 "value": "Production"
 },
 "spark_conf.spark.databricks.delta.optimizeWrite.enabled": {
 "type": "fixed",
 "value": "true"
 },
 "spark_conf.spark.databricks.delta.autoCompact.enabled": {
 "type": "fixed",
 "value": "true"
 },
 "aws_attributes.availability": {
 "type": "allowlist",
 "values": ["ON_DEMAND", "SPOT_WITH_FALLBACK"],
 "defaultValue": "SPOT_WITH_FALLBACK"
 },
 "enable_local_disk_encryption": {
 "type": "fixed",
 "value": true
 },
 "data_security_mode": {
 "type": "fixed",
 "value": "USER_ISOLATION"
 }
 }
}
9. Environment Management
9.1 Environment Variables
Environment variables configure runtime behavior without code changes:
Cluster-Level Environment Variables:
{
 "spark_env_vars": {
 "ENVIRONMENT": "production",
 "LOG_LEVEL": "INFO",
 "CONFIG_PATH": "/dbfs/config/production",
 "PYSPARK_PYTHON": "/databricks/python3/bin/python3"
 }
}
Accessing in Code:
import os

environment = os.environ.get("ENVIRONMENT", "development")
log_level = os.environ.get("LOG_LEVEL", "DEBUG")

if environment == "production":
 # Production-specific configuration
 pass
9.2 Secrets Management
Never hardcode credentials. Use Databricks secrets for sensitive values:
Creating Secret Scope:
Using Databricks CLI
databricks secrets create-scope --scope production-secrets

Add secrets
databricks secrets put --scope production-secrets --key database-password
databricks secrets put --scope production-secrets --key api-key
Accessing Secrets in Code:
In Databricks notebook or job
db_password = dbutils.secrets.get(scope="production-secrets", key="database-password")
api_key = dbutils.secrets.get(scope="production-secrets", key="api-key")

Use in connection string (value is redacted in logs)
jdbc_url = f"jdbc:postgresql://host:5432/db?user=admin&password={db_password}"
9.3 Configuration Files
Store non-sensitive configuration in DBFS or Unity Catalog volumes:
Configuration Structure:
/Volumes/config/
├── development/
│ ├── application.yaml
│ └── logging.yaml
├── staging/
│ ├── application.yaml
│ └── logging.yaml
└── production/
 ├── application.yaml
 └── logging.yaml
Example Configuration File:
application.yaml
database:
 host: ${DB_HOST}
 port: 5432
 name: analytics

spark:
 shuffle_partitions: 200
 broadcast_threshold: 10485760

delta:
 optimize_write: true
 auto_compact: true

logging:
 level: INFO
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
Loading Configuration:
import yaml

def load_config(environment: str) -> dict:
 """Load configuration for specified environment."""
 config_path = f"/Volumes/config/{environment}/application.yaml"

 with open(config_path, 'r') as f:
 config = yaml.safe_load(f)

 return config

Usage
config = load_config(os.environ.get("ENVIRONMENT", "development"))
9.4 Init Scripts
Init scripts run during cluster startup, enabling custom environment setup:
Global Init Script:
#!/bin/bash
global_init.sh - Runs on all clusters

Install common monitoring agent
curl -sL https://monitoring.company.com/agent.sh | bash

Configure logging
mkdir -p /var/log/databricks
chmod 755 /var/log/databricks

Set system-wide environment variables
echo "export COMPANY_ENV=databricks" >> /etc/profile.d/company.sh
Cluster-Specific Init Script:
#!/bin/bash
etl_cluster_init.sh - Runs on ETL clusters only

Install required system libraries
apt-get update && apt-get install -y \
 libpq-dev \
 unixodbc-dev \
 libsasl2-dev

Install Python packages not available in DBR
pip install --quiet \
 great-expectations==0.17.0 \
 sqlalchemy==2.0.0

Configure custom ODBC drivers
cat > /etc/odbc.ini << EOF
[PostgreSQL]
Driver = /usr/lib/x86_64-linux-gnu/odbc/psqlodbcw.so
EOF

echo "ETL cluster initialization complete"
10. Security Configuration
10.1 Authentication and Authorization
Unity Catalog Access Control:
-- Grant catalog access
GRANT USAGE ON CATALOG production TO `data-engineers`;

-- Grant schema access
GRANT USAGE ON SCHEMA production.sales TO `data-engineers`;
GRANT SELECT ON SCHEMA production.sales TO `data-analysts`;

-- Grant table access
GRANT SELECT, MODIFY ON TABLE production.sales.orders TO `etl-service-principal`;
10.2 Network Security
Secure Cluster Configuration:
{
 "cluster_name": "secure-production-cluster",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.2xlarge",
 "num_workers": 4,

 "aws_attributes": {
 "instance_profile_arn": "arn:aws:iam::123456789:instance-profile/databricks-production",
 "availability": "ON_DEMAND"
 },

 "enable_local_disk_encryption": true,
 "data_security_mode": "USER_ISOLATION",

 "spark_conf": {
 "spark.databricks.cluster.profile": "serverless",
 "spark.databricks.passthrough.enabled": "true"
 }
}
10.3 Data Security Modes
	Mode
	Description
	Use Case

	No Isolation
	All users share credentials
	Development only

	Single User
	Cluster runs as specific user
	Individual dev work

	User Isolation
	Each user has separate credentials
	Shared clusters

	Unity Catalog
	Full governance integration
	Production environments

10.4 Encryption Configuration
Ensure data is encrypted at rest and in transit:
{
 "enable_local_disk_encryption": true,
 "spark_conf": {
 "spark.databricks.io.cache.enabled": "true",
 "spark.databricks.io.cache.compression.enabled": "true"
 },
 "aws_attributes": {
 "ebs_volume_type": "GENERAL_PURPOSE_SSD",
 "ebs_volume_count": 1,
 "ebs_volume_size": 100
 }
}
11. Monitoring and Observability
11.1 Cluster Metrics
Monitor these key metrics for cluster health:
	Metric
	Description
	Alert Threshold

	CPU Utilization
	Average CPU usage
	> 90% sustained

	Memory Utilization
	JVM heap usage
	> 85%

	Disk Usage
	Local disk utilization
	> 80%

	Shuffle Read/Write
	Shuffle data volume
	Abnormal spikes

	GC Time
	Garbage collection time
	> 10% of task time

11.2 Spark UI Interpretation
The Spark UI provides detailed execution information:
Key Tabs to Monitor:
	Tab
	What to Look For

	Jobs
	Job duration, failed stages

	Stages
	Task skew, shuffle sizes

	Storage
	Cached RDDs, memory usage

	Environment
	Spark configuration values

	Executors
	Memory and disk per executor

	SQL
	Query plans, execution times

11.3 Logging Configuration
Configure logging for debugging and audit:
Configure logging in notebook
import logging

logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

logger = logging.getLogger("etl_pipeline")
logger.setLevel(logging.INFO)

Usage
logger.info("Starting ETL pipeline")
logger.warning("Data quality issue detected")
logger.error("Pipeline failed", exc_info=True)
11.4 Custom Metrics
Track custom business metrics:
from pyspark.sql import functions as F

def log_pipeline_metrics(df, stage_name):
 """Log metrics for pipeline monitoring."""
 metrics = {
 "stage": stage_name,
 "row_count": df.count(),
 "null_counts": {},
 "timestamp": datetime.now().isoformat()
 }

 # Calculate null percentages for key columns
 for col in df.columns:
 null_count = df.filter(F.col(col).isNull()).count()
 metrics["null_counts"][col] = null_count

 # Log to structured logging or metrics system
 logger.info(f"Pipeline metrics: {json.dumps(metrics)}")

 # Optionally write to Delta table for historical tracking
 metrics_df = spark.createDataFrame([metrics])
 metrics_df.write.mode("append").saveAsTable("monitoring.pipeline_metrics")

 return metrics
12. Troubleshooting Guide
12.1 Common Issues and Solutions
Out of Memory Errors:
	Symptom
	Cause
	Solution

	`java.lang.OutOfMemoryError: Java heap space`
	Insufficient executor memory
	Increase `spark.executor.memory`

	`Container killed by YARN for exceeding memory limits`
	Memory exceeded container limits
	Increase memory or reduce partition size

	OOM during broadcast join
	Broadcast table too large
	Reduce `spark.sql.autoBroadcastJoinThreshold`

Slow Job Performance:
	Symptom
	Cause
	Solution

	Long task times
	Data skew
	Enable AQE skew handling

	Many small tasks
	Too many partitions
	Reduce `spark.sql.shuffle.partitions`

	Shuffle spill to disk
	Insufficient memory
	Increase memory or partition count

	Single slow task
	Stragglers
	Enable speculative execution

12.2 Diagnostic Queries
-- Check table statistics
DESCRIBE EXTENDED catalog.schema.table_name;

-- Analyze query plan
EXPLAIN EXTENDED
SELECT * FROM orders WHERE date = '2025-01-01';

-- Check Delta table details
DESCRIBE DETAIL catalog.schema.delta_table;

-- View table history
DESCRIBE HISTORY catalog.schema.delta_table;
12.3 Memory Troubleshooting
Check executor memory usage
def analyze_memory_usage():
 """Analyze current Spark memory configuration."""
 configs = [
 "spark.executor.memory",
 "spark.driver.memory",
 "spark.memory.fraction",
 "spark.memory.storageFraction",
 "spark.sql.shuffle.partitions"
]

 print("Current Memory Configuration:")
 print("-" * 50)
 for config in configs:
 value = spark.conf.get(config, "Not Set")
 print(f"{config}: {value}")

Run analysis
analyze_memory_usage()
12.4 Shuffle Troubleshooting
Analyze shuffle metrics after job completion
def analyze_shuffle_metrics(df, operation_name):
 """Analyze shuffle behavior for optimization."""
 # Force computation and capture metrics
 df.cache()
 count = df.count()

 # Get Spark UI link for detailed analysis
 spark_ui_url = spark.sparkContext.uiWebUrl
 print(f"Spark UI: {spark_ui_url}")

 # Log partition count
 partition_count = df.rdd.getNumPartitions()
 print(f"Operation: {operation_name}")
 print(f"Row count: {count:,}")
 print(f"Partition count: {partition_count}")

 # Analyze partition sizes
 partition_sizes = df.rdd.mapPartitions(
 lambda it: [sum(1 for _ in it)]
).collect()

 print(f"Min partition size: {min(partition_sizes):,}")
 print(f"Max partition size: {max(partition_sizes):,}")
 print(f"Avg partition size: {sum(partition_sizes)/len(partition_sizes):,.0f}")

 # Check for skew
 skew_ratio = max(partition_sizes) / (sum(partition_sizes)/len(partition_sizes))
 if skew_ratio > 5:
 print(f"WARNING: Data skew detected (ratio: {skew_ratio:.1f}x)")

 return df
13. Cost Management
13.1 Cost Optimization Strategies
	Strategy
	Potential Savings
	Implementation Effort

	Right-size clusters
	20-40%
	Medium

	Use spot instances
	50-70%
	Low

	Enable auto-termination
	10-30%
	Low

	Use instance pools
	5-15%
	Medium

	Optimize job scheduling
	10-20%
	Medium

	Use serverless SQL
	Variable
	Low

13.2 DBU Cost Monitoring
Query cluster usage and costs
def analyze_cluster_costs(days=30):
 """Analyze cluster DBU consumption."""
 usage_df = spark.sql(f"""
 SELECT
 cluster_name,
 workspace_id,
 SUM(usage_quantity) as total_dbus,
 COUNT(DISTINCT usage_date) as active_days,
 AVG(usage_quantity) as avg_daily_dbus
 FROM system.billing.usage
 WHERE usage_date >= current_date() - INTERVAL {days} DAYS
 AND sku_name LIKE '%DBU%'
 GROUP BY cluster_name, workspace_id
 ORDER BY total_dbus DESC
 """)

 return usage_df
13.3 Auto-Termination Best Practices
	Environment
	Recommended Timeout
	Rationale

	Development
	60-120 minutes
	Allow for lunch breaks

	Test/QA
	30-60 minutes
	Shorter iterations

	Production Jobs
	10-15 minutes
	Quick termination after job

	Streaming
	Disabled
	Continuous operation

13.4 Cost Tagging
Implement consistent tagging for cost allocation:
{
 "custom_tags": {
 "Environment": "Production",
 "Team": "DataEngineering",
 "Project": "CustomerAnalytics",
 "CostCenter": "CC-1234",
 "Owner": "team-lead@company.com"
 }
}
14. Reference Configurations
14.1 Small Development Cluster
For individual development work with small datasets:
{
 "cluster_name": "dev-small",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.xlarge",
 "driver_node_type_id": "i3.xlarge",
 "num_workers": 1,
 "autotermination_minutes": 60,
 "spark_conf": {
 "spark.sql.shuffle.partitions": "8",
 "spark.databricks.delta.optimizeWrite.enabled": "true"
 },
 "custom_tags": {
 "Environment": "Development"
 }
}
14.2 Medium ETL Cluster
For standard ETL workloads processing 100GB-1TB:
{
 "cluster_name": "etl-medium",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.2xlarge",
 "driver_node_type_id": "i3.2xlarge",
 "num_workers": 4,
 "autotermination_minutes": 30,
 "spark_conf": {
 "spark.sql.shuffle.partitions": "64",
 "spark.sql.adaptive.enabled": "true",
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.databricks.delta.autoCompact.enabled": "true",
 "spark.databricks.photon.enabled": "true"
 },
 "custom_tags": {
 "Environment": "Production",
 "Workload": "ETL"
 }
}
14.3 Large-Scale Processing Cluster
For heavy workloads processing 1TB+:
{
 "cluster_name": "etl-large",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.4xlarge",
 "driver_node_type_id": "i3.4xlarge",
 "autoscale": {
 "min_workers": 8,
 "max_workers": 32
 },
 "autotermination_minutes": 30,
 "spark_conf": {
 "spark.sql.shuffle.partitions": "auto",
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.skewJoin.enabled": "true",
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.databricks.delta.autoCompact.enabled": "true",
 "spark.databricks.photon.enabled": "true",
 "spark.executor.memory": "48g",
 "spark.driver.memory": "32g"
 },
 "aws_attributes": {
 "availability": "SPOT_WITH_FALLBACK",
 "first_on_demand": 4
 },
 "custom_tags": {
 "Environment": "Production",
 "Workload": "LargeETL"
 }
}
14.4 Streaming Cluster
For continuous streaming workloads:
{
 "cluster_name": "streaming-production",
 "spark_version": "13.3.x-scala2.12",
 "node_type_id": "i3.2xlarge",
 "driver_node_type_id": "i3.2xlarge",
 "num_workers": 4,
 "autotermination_minutes": 0,
 "spark_conf": {
 "spark.sql.shuffle.partitions": "32",
 "spark.streaming.stopGracefullyOnShutdown": "true",
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.sql.streaming.stateStore.providerClass": "com.databricks.sql.streaming.state.RocksDBStateStoreProvider"
 },
 "custom_tags": {
 "Environment": "Production",
 "Workload": "Streaming"
 }
}
14.5 ML Training Cluster
For machine learning model training:
{
 "cluster_name": "ml-training",
 "spark_version": "13.3.x-gpu-ml-scala2.12",
 "node_type_id": "p3.2xlarge",
 "driver_node_type_id": "i3.2xlarge",
 "num_workers": 2,
 "autotermination_minutes": 120,
 "spark_conf": {
 "spark.task.resource.gpu.amount": "1",
 "spark.databricks.mlflow.trackMLlib.enabled": "true"
 },
 "custom_tags": {
 "Environment": "Development",
 "Workload": "MLTraining"
 }
}
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Review
	2025-01-29

	Next Review
	2025-04-29

	Approved By
	Platform Engineering Lead

image1.png
#MAST=CH
DIGITAL

